
 

 

COMPSCI 732: Software Tools and Techniques 
Assignment 2: XSLT-based Mapping Generator 

 
Worth 16.6% of your final grade 

This assignment is due on 14th May 2007 
This assignment must be done individually 

 
Aims 
The aim of this project is to give you some experience in the use of a simple mapping 
language. This language will be used to describe a series of basic mappings between 
XML-based representations of publications. You will use the mapping specification to 
generate XSLT capable of performing mappings in either direction for XML 
documents based on the specified DTD. 
 
Overview 
Your system must be capable of generating XSLT to perform the mappings specified 
in a XML document based specification of a mapping. Several example mappings are 
provided to help you develop your system. A separate set of mappings will be used to 
mark your system. For a particular mapping your system must load the XML file 
describing the mapping and generate XSLT files which will perform the specified 
mapping in both directions. The marker will use these generated XSLT files to test the 
mapping against XML documents containing data in the structure described in the 
mapping file. 
 
The mapping language 
In order to specify a mapping we need a formalism to describe it. As we wish to 
generate XSLT for both directions from one mapping specification we aim for a high-
level, declarative approach to the formalism. Below I describe the components of a 
basic mapping language. In this formalism I use the symbol ↔ to represent an 
equivalence between information on one side of the symbol and that on the other side 
of the symbol. 
 
Top level specification 
We need to capture which schemas a mapping is being specified for. Therefore at the 
top level in the formalism we specify the DTDs: 
 interSchema(DTD_URI ↔ DTD_URI, …) 
 
Element level specification 
After listing the schemas (DTDs) we need to describe which elements are mapped 
between. We do this by listing the elements, with the first coming from the initial 
DTD in the interSchema and the second from the second DTD in the interSchema: 
 interElement(ElementName+ ↔ ElementName+, …) 
 
Invariant specification 
Following this we describe the invariants which control whether this mapping should 
be used for a particular instance of a class. These invariants will be simple equalities 
between an element value and a constant. Invariants can be specified for elements 
from the schema on either side of the mapping. Remember that an invariant which 



restricts a mapping in one direction is used as an initialiser when the mapping is run 
in the reverse direction. 
 
Data level mapping specification 
Within the element level association we then describe all mappings between 
individual element values in the schema. This takes the form of: 
 Equation ↔ Equation 
 
The Equation on the left-hand side of the equivalence symbol refers to data in the left-
hand side ElementName from this interElement, and similarly for the right-hand side 
Equation. An equation can be of the following form: 

• An element name, or path following element references (as in XPath) 
• A default value 
• A function applied to a combination of elements or values. The allowable 

functions are the XPath functions (note that concat/n will not be tested 
with more than 3 elements): 

o concat/n 
o substring-before/2 
o substring-after/2 

• A mathematical equation involving a single arithmetic operator and one 
element name. The allowable operators are the XPath operators of: 

o + 
o – 
o * 
o div 

 
Assumptions for this assignment 
In order to reduce some of the other complexities that can occur when processing 
XML documents and DTDs we make the following assumptions about the types of 
mapping and structure of DTDs we will be handling: 

• The order of elements is equivalent in both DTDs. Here we assume that we 
can generate the resultant XML file by processing the data level mappings in 
the order specified. Without this assumption we would have to load the DTD 
for each schema and determine the correct order to write out element values. 

• The elements described as part of the invariants are the first elements in the 
DTD, occurring in the same order as they are listed in the mapping 
specification. 

• The equations are very simple, so rewriting the equations to perform an 
inverse mapping is greatly simplified. A mathematical equation will only have 
one element on each side of the equivalence and an equation will only map to 
an element (i.e., no equation to equation mappings to solve). 

• The invariant specification is very simple with the assumption that all 
invariants describe a simple equality between a constant value and an element. 

• A catalogue element wraps all data being mapped between (so there is a root 
element for the XML file). You should generate XSLT to handle this top level 
element (not shown in mappings). 

 
 
 



 

 

XML form of the mapping language 
So that you do not need to consider parsing the mapping formalism the mapping 
examples for this assignment have been coded in a XML format. The DTD for this 
XML format, which reflects the mapping language above, is as follows: 
 
<!ELEMENT interSchema (dtdURI, dtdURI, interElement+) > 
<!ELEMENT dtdURI (#PCDATA) > 
<!ELEMENT interElement (elementNameSet, elementNameSet, invariant*, mapping+) > 
<!ELEMENT elementNameSet (elementName+) > 
<!ELEMENT elementName (#PCDATA) > 
<!ELEMENT mapping (equation, equation) > 
<!ELEMENT equation (elementName | value | function | arithmetic) > 
<!ELEMENT value (#PCDATA) > 
<!ELEMENT function (equation+) > 
<!ATTLIST function name (concat | substring-before | substring-after) #REQUIRED> 
<!ELEMENT arithmetic (elementName, value) > 
<!ATTLIST arithmetic op (plus | minus | times | div) #REQUIRED> 
<!ELEMENT invariant (expression, expression) > 
<!ELEMENT expression (elementName | value) > 
 
 
Task One (70%) 
In the first part of this project you will need to handle a one-to-one mapping between 
single elements in a XML file using basic equations and functions. For the simplest 
mapping between single elements the only change which occurs is to modify the 
name of elements in the XML documents. For a mapping with equations the only 
equation which will be present is an equivalence between two elements. Two example 
DTDs are as follows: 
 
publication1.dtd publication2.dtd 
<!ELEMENT catalogue (publication+) > 
<!ELEMENT publication (title, creator, isbn, 
subject?, description?, tableOfContents?, cost) > 
<!ELEMENT title (#PCDATA) > 
<!ELEMENT creator (#PCDATA) > 
<!ELEMENT isbn (#PCDATA) > 
<!ELEMENT subject (#PCDATA) > 
<!ELEMENT description (#PCDATA) > 
<!ELEMENT tableOfContents (#PCDATA) > 
<!ELEMENT cost (#PCDATA) > 

<!ELEMENT catalogue (publication+) > 
<!ELEMENT publication (title, author, isbn, 
classification?, description?, contents?, price, 
country?) > 
<!ELEMENT title (#PCDATA) > 
<!ELEMENT author (#PCDATA) > 
<!ELEMENT isbn (#PCDATA) > 
<!ELEMENT classification (#PCDATA) > 
<!ELEMENT description (#PCDATA) > 
<!ELEMENT contents (#PCDATA) > 
<!ELEMENT price (#PCDATA) > 
<!ELEMENT country (#PCDATA) > 

 
The mapping which is required for this transformation can be found in the file 
‘one2one.xml’ and has the following specification: 



 
interSchema(publication1.dtd ↔ publication2.dtd, 
 interElement(publication ↔ publication, 
  title ↔ title, 
  creator ↔ author, 
  isbn ↔ isbn, 
  subject ↔ classification, 
  description ↔ description, 
  tableOfContents ↔ contents, 
  cost ↔ price 
 ) 
) 
 
You need only handle equations with a single operator (i.e., +, -, *, div) between an 
element and a constant value (you don’t have to worry about type checking) or a 
single function (i.e., concat/n, substring-before/2, substring-after/2). 
 
A first test for equations is to use the DTDs and XML files above but with the 
mapping in the file ‘equation.xml’. In this mapping the cost is defined as price * 
0.5855 (US$ conversion).  
 
A second test is to use the following DTDs for publisher information which requires a 
concatenation as part of the mapping. 
 
publisher1.dtd publisher2.dtd 
<!ELEMENT catalogue (publisherDetails +) > 
<!ELEMENT publisherDetails (publisherName, 
address, phone?, fax?, email?) > 
<!ELEMENT publisherName (#PCDATA) > 
<!ELEMENT address (#PCDATA) > 
<!ELEMENT phone (#PCDATA) > 
<!ELEMENT fax (#PCDATA) > 
<!ELEMENT email (#PCDATA) > 

<!ELEMENT catalogue (publisher+) > 
<!ELEMENT publisher (name, addr1, addr2, 
addr3, email?) > 
<!ELEMENT name (#PCDATA) > 
<!ELEMENT addr1 (#PCDATA) > 
<!ELEMENT addr2 (#PCDATA) > 
<!ELEMENT addr3 (#PCDATA) > 
<!ELEMENT email (#PCDATA) > 

 
The mapping which is required for this transformation can be found in the file 
‘function.xml’ and has the following specification: 
 
interSchema(publisher1.dtd ↔ publisher2.dtd, 
 interElement(publisherDetails ↔ publisher, 
  publisherName ↔ name, 
  address ↔ concat(addr1, “, “, addr2, “, “, addr3), 
  phone ↔ “”, 
  fax ↔ “”, 
  email ↔ email 
 ) 
) 
 
There is example data in the files publisher1.xml and publisher2.xml to use for 
testing. 
 
 



 

 

Task Two (15%) 
Extend your system to allow invariants to control which mapping specification is used 
for a class in a schema. For example, if one schema uses a publication class to 
represent all types of publications (e.g., books, magazines, CDs, DVDs, etc) and 
another schema has individual classes for each type of publication then we need to 
use an invariant to define when the general publication can be mapped to each of 
these individual classes. 
 
publications.dtd catalogue.dtd 
<!ELEMENT catalogue (publication+) > 
<!ELEMENT publication (type, title, creator, 
subject?, description?, tableOfContents?, cost) > 
<!ELEMENT type (#PCDATA) > 
<!ELEMENT title (#PCDATA) > 
<!ELEMENT creator (#PCDATA) > 
<!ELEMENT subject (#PCDATA) > 
<!ELEMENT description (#PCDATA) > 
<!ELEMENT tableOfContents (#PCDATA) > 
<!ELEMENT cost (#PCDATA) > 

<!ELEMENT catalogue (book*, cd*, dvd*) > 
<!ELEMENT book (title, author, classification?, 
description?, tableOfContents?, price) > 
<!ELEMENT title (#PCDATA) > 
<!ELEMENT author (#PCDATA) > 
<!ELEMENT classification (#PCDATA) > 
<!ELEMENT description (#PCDATA) > 
<!ELEMENT tableOfContents (#PCDATA) > 
<!ELEMENT price (#PCDATA) > 
<!ELEMENT cd (title, band, musicType?, 
description?, songList?, price) > 
<!ELEMENT band (#PCDATA) > 
<!ELEMENT musicType (#PCDATA) > 
<!ELEMENT songList (#PCDATA) > 
<!ELEMENT dvd (title, producer, movieType?, 
description?, price) > 
<!ELEMENT producer (#PCDATA) > 
<!ELEMENT movieType (#PCDATA) > 

 
The mapping which is required for this transformation can be found in the file 
‘invariant.xml’ (there is example data in the files publications.xml and catalogue.xml) 
and has the following specification: 
 
interSchema(publications.dtd ↔ catalogue.dtd, 
 interElement(publication ↔ book, 
  invariants(type = “BOOK”), 
  title ↔ title, 
  creator ↔ author, 
  subject ↔ classification, 
  description ↔ description, 
  tableOfContents ↔ tableOfContents, 
  cost ↔ price * 0.5855 
 ) 
 interElement(publication ↔ cd, 
  invariants(type = “CD”), 
  title ↔ title, 
  creator ↔ band, 
  subject ↔ musicType, 
  description ↔ description, 
  tableOfContents ↔ songList, 
  cost ↔ price * 0.5855 
 ) 
 
 
 
 
 
 



 interElement(publication ↔ dvd, 
  invariants(type = “DVD”), 
  title ↔ title, 
  creator ↔ producer, 
  subject ↔ movieType, 
  description ↔ description, 
  cost ↔ price * 0.5855 
 ) 
) 
 
Remember that invariants (e.g., type = “BOOK”) restrict which object will be 
mapped when going from the publications DTD to the catalogue DTD. In the reverse 
direction the invariant will initialise the value of type in the publications DTD to the 
value “BOOK”. There will only ever be one invariant to determine which mapping to 
apply for a particular element. 
 
 
Task Three (15%) 
Finally, extend your system to perform mappings where the structuring of the XML 
data is quite different. For example, the following catalogue descriptions have very 
different structures (one is a flat structure, the other a nested structure). The nested 
structure is shown in the following UML diagram. 
 

catalogue

-publisherName
-address
-phone
-fax
-email

publisherDetails

-title
-creator
-isbn
-subject
-description
-tableOfContents
-cost

publication

1

1

1

*

 
 



 

 

 
catalogues.dtd bookdata.dtd 
<!ELEMENT catalogue (publisherDetails, 
(publication)+) > 
<!ELEMENT publisherDetails (publisherName, 
address, phone?, fax?, email?) > 
<!ELEMENT publisherName (#PCDATA) > 
<!ELEMENT address (#PCDATA) > 
<!ELEMENT phone (#PCDATA) > 
<!ELEMENT fax (#PCDATA) > 
<!ELEMENT email (#PCDATA) > 
<!ELEMENT publication (title, creator, isbn, 
subject?, description?, tableOfContents?, cost) > 
<!ELEMENT title (#PCDATA) > 
<!ELEMENT creator (#PCDATA) > 
<!ELEMENT isbn (#PCDATA) > 
<!ELEMENT subject (#PCDATA) > 
<!ELEMENT description (#PCDATA) > 
<!ELEMENT tableOfContents (#PCDATA) > 
<!ELEMENT cost (#PCDATA) > 

<!ELEMENT catalogue (bookdata+) > 
<!ELEMENT bookdata (publisher, title, isbn, 
bicClassification?, distributor?, availability?, 
format?, description?, tableOfContents?, price) > 
<!ELEMENT publisher (#PCDATA) > 
<!ELEMENT title (#PCDATA) > 
<!ELEMENT isbn (#PCDATA) > 
<!ELEMENT bicClassification (#PCDATA) > 
<!ELEMENT distributor (#PCDATA) > 
<!ELEMENT availability (#PCDATA) > 
<!ELEMENT format (#PCDATA) > 
<!ELEMENT description (#PCDATA) > 
<!ELEMENT tableOfContents (#PCDATA) > 
<!ELEMENT price (#PCDATA) > 
 

 
For this structural mapping you can assume that there will be a maximum of two 
elements named on one side of the interElement specification and only one on the 
other side (so only handling cases like the example above). You can also assume that 
if there are two elements named that the first element will always only have one 
occurrence in the XML data file. 
 
The mapping which is required for this transformation can be found in the file 
‘structure.xml’ (there is example data in the files catalogues.xml and bookdata.xml) 
and has the following specification: 
 
interSchema(catalogue.dtd ↔ bookdata.dtd, 
 interElement(publisherDetails, publication ↔ bookdata, 
  publisherDetails/publisherName ↔ publisher, 
  publisherDetails/address ↔ “”, 
  publisherDetails/phone ↔ “”, 
  publisherDetails/fax ↔ “”, 
  publisherDetails/email ↔ “”, 
  publication/title ↔ title, 
  publication/creator ↔ “”, 
  publication/isbn ↔ isbn, 
  publication/subject ↔ bicClassification, 
   “Amorzon” ↔ distributor, 
   “In Stock” ↔ availability, 
   “Paperback” ↔ format, 
  publication/description ↔ description, 
  publication/tableOfContents ↔ tableOfContents, 
  publication/cost ↔ 0.5855 * price 
 ) 
) 
 
 
 



Deliverables 
You should provide the following deliverables for this project (assuming you use Java 
for your development): 

1. A single JAR file containing all of your code for tasks 1, 2 and 3. Name this 
file ‘mapping.jar’. You do not need a separate program for each task, one 
program could work for all three tasks. 

2. A Word document which states how far you got in your implementation and 
also contains instructions on how to run your mapping system for tasks 1, 2 
and 3. Name this file ‘instructions.doc’. 

 
You should plan to spend no more than 25 hours on this assignment. This is an 
individual project, so make sure you develop your own solutions. 
 
Hand in the electronic copy of your prototype through the web drop-box. You 
can make as many submissions as you like, only your last submission will be 
marked. If you make multiple submissions ensure that you send all files for each 
submission. 
 
 
Online Sources 
For general resources on XML, XSLT, and DOM look at: 

• XML Tutorial: The XML Revolution: http://www.brics.dk/~amoeller/XML/  
• The Java Web Services Tutorial: http://java.sun.com/webservices/tutorial.html  
• XPath Language: http://www.w3.org/TR/xpath  

 


